top button
Flag Notify
    Connect to us
      Facebook Login
      Site Registration Why to Join

    Get Free Article Updates

Facebook Login
Site Registration
Print Preview

Small Discussion About Firebase?

0 votes

What is Firebase?

The Firebase Realtime Database is a cloud-hosted database. Data is stored as JSON and synchronized in realtime to every connected client. When you build cross-platform apps with our iOS, Android, and JavaScript SDKs, all of your clients share one Realtime Database instance and automatically receive updates with the newest data.

The Firebase Realtime Database lets you build rich, collaborative applications by allowing secure access to the database directly from client-side code. Data is persisted locally, and even while offline, realtime events continue to fire, giving the end user a responsive experience. When the device regains connection, the Realtime Database synchronizes the local data changes with the remote updates that occurred while the client was offline, merging any conflicts automatically.

The Realtime Database provides a flexible, expression-based rules language, called Firebase Realtime Database Security Rules, to define how your data should be structured and when data can be read from or written to. When integrated with Firebase Authentication, developers can define who has access to what data, and how they can access it.

The Realtime Database is a NoSQL database and as such has different optimizations and functionality compared to a relational database. 

Firebase realtime database is a schemaless database in which the data is stored in JSON format. Basically the entire database is a big JSON tree with multiple nodes. So when you plan your database, you need to prepare the json structure in way that the data is accessible in easier way by avoiding nesting of child nodes.

Firebase provides great support when comes to offline data. It automatically stores the data offline when there is no internet connection. When the device connects to internet, all the data will be pushed to realtime database.

Video for what is Firebase?

posted Oct 6 by Manish Tiwari

  Promote This Article
Facebook Share Button Twitter Share Button Google+ Share Button LinkedIn Share Button Multiple Social Share Button

Related Articles

What is InfiniteGraph?
InfiniteGraph is an enterprise distributed graph database implemented in Java, and is from a class of NOSQL (or Not Only SQL) database technologies that focus on graph data structures. Developers use Infinitegraph to find useful and often hidden relationships in highly connected big data sets.


  • Distributed
  • Intuitive
  • Cost Effective
  • Powerful Navigation​


  • API/Protocols: Java (core C++)
  • Graph Model: Labeled directed multigraph. An edge is a first-class entity with an identity independent of the vertices it connects.
  • Backup, including online incremental backup and full restore.
  • Concurrency: Update locking on subgraphs, concurrent non-blocking ingest.
  • Consistency: Flexible (from ACID to relaxed).
  • Distribution: Lock server and 64-bit object IDs support dynamic addressing space (with each federation capable of managing up to 65,535 individual databases and 10^24 bytes (one quadrillion gigabytes, or a yottabyte) of physical addressing space).
  • Processing: Multi-threaded.
  • Cloud enabled.
  • Query Methods: Traverser and graph navigation API, predicate language qualification, path pattern matching.
  • Parallel query support.
  • Visualization tool.
  • Schema: Supports schema-full plus provides a mechanism for attaching side data.
  • Transactions: Fully ACID.
  • Tinkerpop Blueprints and Gremlin support.
  • Talend output connector to InfiniteGraph.
  • Source: Proprietary, with open source extensions, integrated components, and third party connectors.
  • License Options: Flexible pricing and license options.
  • Platforms: Windows, Linux, and Mac with full interoperability.
Video for InfiteGraph


What is Zope?

The Zope Object Database (ZODB) is an object-oriented database for transparently and persistently storing Python objects. It is included as part of the Zope web application server, but can also be used independently of Zope.

Because ZODB is an object database:

  • no separate language for database operations
  • very little impact on your code to make objects persistent
  • no database mapper that partially hides the database.

Using an object-relational mapping is not like using an object database.
almost no seam between code and database.

The Zope Foundation is an organization that promotes the development of the Zope platform by supporting the community that develops and maintains the relevant software components. The community includes both open source software, documentation and web infrastructure contributors, as well as business and organization consumers of the software platform. It manages the websites, an infrastructure for open source collaboration.

Plone uses the ZODB database. The ZODB happily stores any Python object with any attributes — there is no need to write database schema or table descriptions as there is with SQL-based systems. If data models are described somehow the descriptions are written in Python, usually using zope.schema package.

Video for Zope​


What is ArangoDB?

ArangoDB is a native multi-model database with flexible data models for documents, graphs, and key-values. Build high-performance applications using a convenient SQL-like query language or JavaScript extensions.

Multi-Model: Documents, graphs and key-value pairs — model your data as you see fit for your application.
Joins: Conveniently join what belongs together for flexible ad-hoc querying, less data redundancy.
Transactions: Easy application development keeping your data consistent and safe. No hassle in your client.

ArangoDB is to use the arangoimp command-line tool. arangoimp allows you to import data records from a file into an existing database collection.

ArangoDB provides scalable, highly efficient queries when working with graph data.The database uses JSON as a default storage format, but internally it uses ArangoDB's VelocyPack - a fast and compact binary format for serialization and storage.ArangoDB can natively store a nested JSON object as a data entry inside a collection. Therefore, there is no need to disassemble the resulting JSON objects. 

Video for ArangoDB?


What is Mark Logic?

MarkLogic is an operational and transactional Enterprise NoSQL database that integrates data better, faster, with less cost.
MarkLogic is a single product that combines features of a highly distributed NoSQL database, a search engine, all with application services layered over the top.
In MarkLogic the search engine is part of the same product. Thus you don’t need to ‘bolt on’ a third party product with all the integration code and separate update schedules that implies. Also, MarkLogic uses the same underlying indexes for simple primary/secondary key fetching of documents (a la database access) as it does for use by the search engine. Thus MarkLogic is more frugal on disc requirements for indexes.

Everything in MarkLogic is stored as compressed binary trees – NOT as raw documents – not even simply as gzipped documents – so MarkLogic saves disc space over alternatives. MarkLogic storing documents with an average (say 5-15) range indexes will effectively use the same amount of disc space – for data plus indexes – as the raw document. This is part of our secret sauce, and the algorithms are patented.


  • ACID Transactions
  • High Availability & Disaster Recovery
  • Certified Security
  • Write Once, Run It Anywhere


  • Scalability
  • Bitemporal
  • Tiered Storage
  • Geospatial
  • Semantics
  • Real-Time Alerting

Video for Mark Logic Overview 


What is Amazon DynamoDB?
Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. ... With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic.

Amazon DynamoDB Accelerator (DAX) is a fully managed, highly available, in-memory cache that can reduce Amazon DynamoDB response times from milliseconds to microseconds, even at millions of requests per second.

Forrester Research positions Amazon Web Services in the Leaders Category of the Forrester Wave Big Data NoSQL, Q3. According to Forrester, Amazon DynamoDB is the most popular NoSQL cloud database. Learn why DynamoDB has proven to be a cost-effective NoSQL database solution for three organizations interviewed by IDC.

DynamoDB exposes performance metrics that helps provision it correctly and to keep applications using DynamoDB running smoothly:

  • Requests and throttling
  • Errors: ConditionalCheckFailedRequests, UserErrors, SystemErrors
  • Metrics related to Global Secondary Index creation

The DynamoDB Triggers feature integrates with AWS Lambda to allow a developer to code actions based on updates to items in a DynamoDB table, such as sending a notification or connecting a table to another data source. The developer associates a Lambda function, which stores the logic code, with the stream on a DynamoDB table. AWS Lambda then reads updates to a table from a stream and executes the function.​

Video for DynamoDB​



What is Couchbase?

Couchbase Server, originally known as Membase, is an open-source, distributed (shared-nothing architecture) multi-model NoSQL document-oriented database software package that is optimized for interactive applications. These applications may serve many concurrent users by creating, storing, retrieving, aggregating, manipulating and presenting data. In support of these kinds of application needs, Couchbase Server is designed to provide easy-to-scale key-value or JSON document access with low latency and high sustained throughput. It is designed to be clustered from a single machine to very large-scale deployments spanning many machines. A version originally called Couchbase Lite was later marketed as Couchbase Mobile combined with other software.

Couchbase Server provided client protocol compatibility with memcached,but added disk persistence, data replication, live cluster reconfiguration, rebalancing and multitenancy with data partitioning.

Couchbase Server is specialized to provide low-latency data management for large-scale interactive web, mobile, and IoT applications. Common requirements that Couchbase Server was designed to satisfy include:

  • Flexible data model
  • Powerful query language
  • Scalability
  • Performance
  • Simple administration
  • High Availability

Couchbase Server is a comprehensive, general purpose database that supports broad set of web, mobile, and IoT applications.

Video for what is CouchBase



What is LMDB?
Lightning Memory-Mapped Database (LMDB) is a software library that provides a high-performance embedded transactional database in the form of a key-value store. LMDB is written in C with API bindings for several programming languages.

LMDB is a Btree-based database management library modeled loosely on the BerkeleyDB API, but much simplified. The entire database is exposed in a memory map, and all data fetches return data directly from the mapped memory, so no malloc's or memcpy's occur during data fetches. As such, the library is extremely simple because it requires no page caching layer of its own, and it is extremely high performance and memory-efficient. It is also fully transactional with full ACID semantics, and when the memory map is read-only, the database integrity cannot be corrupted by stray pointer writes from application code.

The library is fully thread-aware and supports concurrent read/write access from multiple processes and threads. Data pages use a copy-on- write strategy so no active data pages are ever overwritten, which also provides resistance to corruption and eliminates the need of any special recovery procedures after a system crash. Writes are fully serialized; only one write transaction may be active at a time, which guarantees that writers can never deadlock. The database structure is multi-versioned so readers run with no locks; writers cannot block readers, and readers don't block writers.

Unlike other well-known database mechanisms which use either write-ahead transaction logs or append-only data writes, LMDB requires no maintenance during operation. Both write-ahead loggers and append-only databases require periodic checkpointing and/or compaction of their log or database files otherwise they grow without bound. LMDB tracks free pages within the database and re-uses them for new write operations, so the database size does not grow without bound in normal use


  • LMDB uses memory-mapped files, giving much better I/O performance.
  • Works well with really large datasets. The HDF5 files are always read entirely into memory, so you can’t have any HDF5 file exceed your memory capacity. You can easily split your data into several HDF5 files though (just put several paths to h5 files in your text file).​

Video for LMDB?

Contact Us
+91 9880187415
#280, 3rd floor, 5th Main
6th Sector, HSR Layout
Karnataka INDIA.