top button
Flag Notify
    Connect to us
      Facebook Login
      Site Registration Why to Join

    Get Free Article Updates

Facebook Login
Site Registration
Print Preview

Small Discussion About Apache SINGA?

0 votes
22 views

What is Apache SINGA?

SINGA is an Apache Incubating project for developing an open source machine learning library. It provides a flexible architecture for scalable distributed training, is extensible to run over a wide range of hardware, and has a focus on health-care applications.

SINGA was initiated by the DB System Group at National University of Singapore in 2014, in collaboration with the database group of Zhejiang University.

SINGA is a general distributed deep learning platform for training big deep learning models over large datasets. It is designed with an intuitive programming model based on the layer abstraction. A variety of popular deep learning models are supported, namely feed-forward models including convolutional neural networks (CNN), energy models like restricted Boltzmann machine (RBM), and recurrent neural networks (RNN). Many built-in layers are provided for users. SINGA architecture is sufficiently flexible to run synchronous, asynchronous and hybrid training frameworks. SINGA also supports different neural net partitioning schemes to parallelize the training of large models, namely partitioning on batch dimension, feature dimension or hybrid partitioning.

The second goal is to make SINGA easy to use. It is non-trivial for programmers to develop and train models with deep and complex model structures. Distributed training further increases the burden of programmers, e.g., data and model partitioning, and network communication. Hence it is essential to provide an easy to use programming model so that users can implement their deep learning models/algorithms without much awareness of the underlying distributed platform.

Video for Apache SINGA

posted Dec 4 by Manish Tiwari

  Promote This Article
Facebook Share Button Twitter Share Button Google+ Share Button LinkedIn Share Button Multiple Social Share Button


Related Articles

What is SAP BW?

SAP's Business Information Warehouse (BW) is a comprehensive business intelligence product centered around a data warehouse that is optimized for SAP's R/3 environment. 

SAP BW is one of the important technical module of SAP and it stands for business information warehouse. The most important thing in the running of a business is data. Every business activity generates data. This data is used by a company is all areas of its business; it is used by the employees of the company in their work, to help them make a better decision.

SAP NetWeaver BW is a special software made by the maker of enterprise resource planning ERP ) software systems, SAP, which groups together and formats huge amounts of business data in the Enterprise Data Warehouse. It does so with the help of SAP BI tools, and is supported by a wide range of Enterprise Planning tools. 

This allows the SAP BI software to analyze the data which is important for all decision making in the company. In this way, SAP BW optimizes business processes, helps a corporation to act faster and to be more flexible, as per the current requirements of a market.

Video for SAP BW

https://www.youtube.com/watch?v=ozYXz998ROU​

READ MORE

What is TensorFlow?

TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. 

The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. 

TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.

An open-source software library for Machine Intelligence

TensorFlow is cross-platform. It runs on nearly everything: GPUs and CPUs—including mobile and embedded platforms—and even tensor processing units (TPUs), which are specialized hardware to do tensor math on. They aren't widely available yet, but we have recently launched an alpha program.

TensorFlow's high-level APIs, in conjunction with computation graphs, enable a rich and flexible development environment and powerful production capabilities in the same framework.

Advantages

  • It's portable, as the graph can be executed immediately or saved to use later, and it can run on multiple platforms: CPUs, GPUs, TPUs, mobile, embedded. Also, it can be deployed to production without having to depend on any of the code that built the graph, only the runtime necessary to execute it.
  • It's transformable and optimizable, as the graph can be transformed to produce a more optimal version for a given platform. Also, memory or compute optimizations can be performed and trade-offs made between them. This is useful, for example, in supporting faster mobile inference after training on larger machines.
  • Support for distributed execution

Video for TensorFlow

https://www.youtube.com/watch?v=oZikw5k_2FM

READ MORE

What is Scikit-learn?

Scikit-learn (formerly scikits.learn) is a free software machine learning library for the Python programming language.[3] It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

Features:

  • Simple and efficient tools for data mining and data analysis
  • Accessible to everybody, and reusable in various contexts
  • Built on NumPy, SciPy, and matplotlib
  • Open source, commercially usable - BSD license

scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the boston house prices dataset for regression.

Scikit-learn is largely written in Python, with some core algorithms written in Cython to achieve performance. Support vector machines are implemented by a Cython wrapper around LIBSVM; logistic regression and linear support vector machines by a similar wrapper around LIBLINEAR.

Video for Scikit Learn

https://www.youtube.com/watch?v=BJ5ARpYYI-c​

READ MORE

What is Linear regression?

Linear regression is a linear system and the coefficients can be calculated analytically using linear algebra. ... 

Linear regression does provide a useful exercise for learning stochastic gradient descent which is an important algorithm used for minimizing cost functions by machine learning algorithms.

Linear regression is a very simple approach for supervised learning. Though it may seem somewhat dull compared to some of the more modern algorithms, linear regression is still a useful and widely used statistical learning method. Linear regression is used to predict a quantitative response Y from the predictor variable X.
Linear Regression is made with an assumption that there’s a linear relationship between X and Y.

Linear regression is a linear model, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y). More specifically, that y can be calculated from a linear combination of the input variables (x).

When there is a single input variable (x), the method is referred to as simple linear regression. When there are multiple input variables, literature from statistics often refers to the method as multiple linear regression.

Video for Linear Regression

https://www.youtube.com/watch?v=CtKeHnfK5uA

READ MORE

What is Naive Bayes Classifier?

The Naive Bayes Classifier technique is based on the so-called Bayesian theorem and is particularly suited when the dimensionality of the inputs is high. Despite its simplicity, Naive Bayes can often outperform more sophisticated classification methods.

It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.

In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression, which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers.

4 Applications of Naive Bayes Algorithms

  1. Real time Prediction: Naive Bayes is an eager learning classifier and it is sure fast. Thus, it could be used for making predictions in real time.
  2. Multi class Prediction: This algorithm is also well known for multi class prediction feature. Here we can predict the probability of multiple classes of target variable.
  3. Text classification/ Spam Filtering/ Sentiment Analysis: Naive Bayes classifiers mostly used in text classification (due to better result in multi class problems and independence rule) have higher success rate as compared to other algorithms. As a result, it is widely used in Spam filtering (identify spam e-mail) and Sentiment Analysis (in social media analysis, to identify positive and negative customer sentiments)
  4. Recommendation System: Naive Bayes Classifier and Collaborative Filtering together builds a Recommendation System that uses machine learning and data mining techniques to filter unseen information and predict whether a user would like a given resource or not 
Video for Naive Bayes 
https://www.youtube.com/watch?v=M59h7CFUwPU
READ MORE

What is Deep learning?

Deep learning is a machine learning technique that teaches computers to do what comes naturally to humans: learn by example. 

Deep learning is a key technology behind driverless cars, enabling them to recognize a stop sign, or to distinguish a pedestrian from a lamppost. 

Deep Learning

It is the key to voice control in consumer devices like phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of attention lately and for good reason. It’s achieving results that were not possible before.

In deep learning, a computer model learns to perform classification tasks directly from images, text, or sound. Deep learning models can achieve state-of-the-art accuracy, sometimes exceeding human-level performance. Models are trained by using a large set of labeled data and neural network architectures that contain many layers.

Deep learning, a subset of machine learning, utilizes a hierarchical level of artificial neural networks to carry out the process of machine learning. The artificial neural networks are built like the human brain, with neuron nodes connected together like a web. While traditional programs build analysis with data in a linear way, the hierarchical function of deep learning systems enables machines to process data with a non-linear approach.

Video for Deep Learning

https://www.youtube.com/watch?v=3cSjsTKtN9M​

READ MORE
Contact Us
+91 9880187415
sales@queryhome.net
support@queryhome.net
#280, 3rd floor, 5th Main
6th Sector, HSR Layout
Bangalore-560102
Karnataka INDIA.
QUERY HOME
...