top button
Flag Notify
    Connect to us
      Facebook Login
      Site Registration Why to Join

    Get Free Article Updates

Facebook Login
Site Registration

Generating XML Root Node Having Colon-Via Serialization

0 votes

Recently, I got a requirement to generate an XML on the fly with some defined schema. I know this requirement looks very simple at first sight, but actually, it was not.

The XML which was to be generated was having a very specific format as it was supposed to be the input for some third-party tools. So, it means, it should be fully compliant with the prescribed XML node structure. Just have a look at the below schema.


  1. <sl:RandomWindow xmlns:xsi="" xmlns:sl="" xsi:schemaLocation="">  
  2.    <Title>First Window</Title>  
  3.    <Border>Single</Border>  
  4. </sl:RandomWindow>  

Below are the classes I created for serialization purposes.

  1. public class RandomWindow    
  2. {    
  3.     [XmlAttribute(Form=System.Xml.Schema.XmlSchemaForm.Qualified, Namespace="")]    
  4.     public string schemaLocation {get;set;}    
  6.     [XmlElement]    
  7.     public string Title {get;set;}    
  9.      [XmlElement]    
  10.      public string Border {get;set;}    
  11. }    

By using the XmlElement and XmlAttribute classes, I was able to generate most of the required parts of the XML, as shown below.

  1. <?xml version="1.0" encoding="UTF-8"?>   
  2. <RandomWindow xsi:schemaLocation="" xmlns:sl="" xmlns:xsi="">    
  3. <Title>First Window</Title>    
  4. <Border>Single</Border>    
  5. </RandomWindow>    

But the only thing which didn’t come up correctly was the root node that is expected to be in the form <sl:RandomWindow>.

So, in order to achieve the root node with prefix and colon, I updated the code to -


  1. [XmlRoot("sl:RandomWindow")]  
  2. public class RandomWindow {…}  

But alas! It gave me some strange results. It converted the prefix to hexadecimal, as shown below. Then I thought, instead of providing a concrete prefix, let’s add namespace itself.


  1. [XmlRoot("RandomWindow", Namespace = "")]  
  2. public class RandomWindow { ...}  


And my result was a bit closer to what I need, but not the exact one. Now, the issue remaining was the extra prefix in front of each element :(.

In order to resolve this issue, I tried various options provided by various blogs, but no luck. However, after spending hours, I was able to crack it by a "hit and try" formula. To hide namespaces at element node level, I provided the namespace value as empty just like in the code shown below.

  1. [XmlRoot("RandomWindow", Namespace="")]    
  2. public class RandomWindow      
  3. {      
  4.     [XmlAttribute(Form=System.Xml.Schema.XmlSchemaForm.Qualified, Namespace="")]      
  5.     public string schemaLocation {get;set;}      
  7.     [XmlElement(Namespace=" ")]      
  8.     public string Title {get;set;}      
  10.      [XmlElement(Namespace=" ")]     
  11.      public string Border {get;set;}      
  12. }    

And that did the trick for me. Finally, I was able to achieve the required format.

  1. <?xml version="1.0" encoding="UTF-8"?>      
  2. <sl:RandomWindow xsi:schemaLocation="" xmlns:sl="" xmlns:xsi="">      
  3. <Title xmlns=" ">First Window</Title>      
  4. <Border xmlns=" ">Single</Border>      
  5. </sl:RandomWindow>     

Although this issue was pretending to be very small, it ate up so much of my time. This is why I thought to share it here in hopes that it would be helpful for you and will save your time.

Happy troubleshooting !!!

posted Jan 10 by Shivaranjini

  Promote This Article
Facebook Share Button Twitter Share Button Google+ Share Button LinkedIn Share Button Multiple Social Share Button

Related Articles

There are many different techniques to use by which you can create an XML document in C#. One of them is LINQ to XML which we are going to discuss in this article.

Let’s say we need to create an XML as below:

  1. <?xml version="1.0" encoding="UTF-8"?>  
  2. <Parent>  
  3. <Header>  
  4. <FileDetails>  
  5. <FileName>RandomFile</FileName>  
  6. <FileVersion>1.0</FileVersion>  
  7. </FileDetails>  
  8. </Header>  
  9. <Body>  
  10. <Infos>  
  11. <Info Type="Information1">This is Information1</Info>  
  12. <Info Type="Information2">This is Information2</Info>  
  13. </Infos>  
  14. <Users>  
  15. <UserDetails>  
  16. <Name>  
  17. <FirstName>Vipul</FirstName>  
  18.  <MiddleName/>  
  19.                     <LastName>Malhotra</LastName>  
  20.                 </Name>  
  21. <DateOfBirth>12-Apr-1990</DateOfBirth>  
  22. </UserDetails>  
  23. </Users>  
  24. </Body>  

Let’s break the creation of the file in two parts so as to be able to see more features.

We will first create the below Xml:

  1. <?xml version="1.0" encoding="UTF-8"?>  
  2. <Parent>  
  3. <Header>  
  4. <FileDetails>  
  5. <FileName>RandomFile</FileName>  
  6. <FileVersion>1.0</FileVersion>  
  7. </FileDetails>  
  8. </Header>  
  9. <Body>  
  10. <Infos>  
  11. <Info Type="Information1">This is Information1</Info>  
  12. <Info Type="Information2">This is Information2</Info>  
  13. </Infos>  
  14. </Body>  

In order to create this, we will first define an XDocument with the parent root as below:

  1. XDocument doc = new XDocument(new XElement("Parent"));  

After this, we will use this “doc” as the root of the file and will writing nested XElement to it.

Let’s first create the Header portion of the xml.
Please notice that the XElement “Header “ is added as a new element and the further elements are added as nested to this “Header” element. It is due to the reason that the elements are sub-elements of “Header”. Further “FileName” and “FileVersion” element is a sub-element of “FileDetails”

In the same way, we would add another section to the root of the doc. This section would be “Body”. 

The code for the same would be as:
This follows the same logic that “Body” is also sub-node of the root “parent” and so it is added directly to the root. Whereas , the element “Infos” is sub-element of “Body” and is so added in the way above. Same goes for “Info” which is a further sub-element of “Infos”. 

Also notice how an attribute is added to each of the “Info” element using XAttribute.

After this, we further need to add the below section as sub-nodes of “Body” and not the root of the application:

  1. <Users>  
  2. <UserDetails>  
  3. <Name>  
  4. <FirstName>Vipul</FirstName>  
  5.  <MiddleName/>  
  6.                     <LastName>Malhotra</LastName>  
  7.                 </Name>  
  8. <DateOfBirth>12-Apr-1990</DateOfBirth>  
  9. </UserDetails>  
  10. </Users>  

In order to do that, we would make sure that the code starts appending the code inside the “Body” tag of the already created xml.

Using XDocument, we can search for the node “Body” and then start adding node XElements to it .
Searching a node Is done using:

Further adding more elements to it is done using the below code:
The logic behind the hierarchy is the same as that discussed above.

The code can also be used inside a loop in case we need to add many similar sections to a particular node. Like in this case there can be many users and all of their details would have to be added in different UserDetails section inside the “Body” node.



In today's tech world, most of the applications being developed under Logistics, Inventory, Internal Transaction and other domains require day-to-day data in excel files and prefer excel file operations in their applications.

I will be sharing one of the Nuget Package tools which, with very minimal lines of code, will export an excel file for us.

The Tool is Closed XML.

Just write a few lines of code and done! It is developer friendly. If we have used the Open XML, there are a lot of lines of code which are required to export an excel from data. We can create an excel file of 2007/2010 configuration without an Excel application.

To add the closed XML package, we add it directly through the user interface from the Nuget Gallery and also, we can use the Package Manager console to add the package using the below command

PM> Install-Package ClosedXML


  1. DataTable dt = new DataTable();  
  2. dt.Columns.AddRange(new DataColumn[3]  
  3. {  
  4.  new DataColumn("Id", typeof(int)), new DataColumn("Name", typeof(string)), new DataColumn("Country", typeof(string))  
  5. });  
  6. dt.Rows.Add(1, "C Sharp corner", "United States");  
  7. dt.Rows.Add(2, "Suraj", "India");  
  8. dt.Rows.Add(3, "Test User", "France");  
  9. dt.Rows.Add(4, "Developer", "Russia"); //Exporting to Excel               
  10. string folderPath = "C:\\Excel\\";              
  11. if (!Directory.Exists(folderPath))              
  12. {                   
  13.     Directory.CreateDirectory(folderPath);            
  14. }     
  15. //Codes for the Closed XML             
  16.     using (XLWorkbook wb = new XLWorkbook())              
  17.     {                
  18.         wb.Worksheets.Add(dt, "Customers");                  
  19.         //wb.SaveAs(folderPath + "DataGridViewExport.xlsx");                
  20.         string myName = Server.UrlEncode("Test" + "_" + DateTime.Now.ToShortDateString() + ".xlsx");        
  21.         MemoryStream stream = GetStream(wb);  
  22.         // The method is defined below             
  23.         Response.Clear();                  
  24.         Response.Buffer = true;              
  25.         Response.AddHeader("content-disposition", "attachment; filename=" + myName);         
  26.         Response.ContentType = "application/";           
  27.         Response.BinaryWrite(stream.ToArray());                
  28.         Response.End();  
  29.     }  

The above code instantiates a data table, with few data initializations.

  1. public MemoryStream GetStream(XLWorkbook excelWorkbook)   
  2. {  
  3.     MemoryStream fs = new MemoryStream();  
  4.     excelWorkbook.SaveAs(fs);  
  5.     fs.Position = 0;  
  6.     return fs;  
  7. }

We are using this method, so as to return a stream in order to download the file in response to using the stream. The save as method of the Closed XML helps create the stream.

Downloaded file looks like below,


  1. XML document has a single root node.
  2. The tree is a general ordered tree.
  3. A parent node may have any number of children.
  4. Child nodes are ordered and may have siblings.
  5. Preorder traversals are usually used to get the information, out of the tree.


Simple XML Document

  1. <?xml version = “1.0” ?> <address>  
  2. <name>  
  3. <first>Alice</first></br>  
  4. <last>Lee</last></br>  
  5. </name>  
  6. <email></email></br>  
  7. <phone>123-45-6789</phone></br>  
  8. <birthday>  
  9. <year>1983</year></br>  
  10. <month>07</month></br>  
  11. <day>15</day>  
  12. </birthday>  
  13. </address>  

Program Demo 

Write the code from XMLCopyEditor.

Save Any Location(EX:Sample.xml). 






What is XML?

  1. XML stands for Extensible Markup Language.
  2. XML is a markup language much like HTML.
  3. XML was designed to carry the data but not to display it.
  4. XML tags are not predefined. You must define your own tags.
  5. XML is designed to be self-descriptive.

Why XML is popular?

  1. Our machines are now only capable of processing requirements of this data format.
  2. It supports data processing, data storage, and bandwidth requirements for the exchange of XML documents.
  3. Driving force for the use of a technology, like XML, is the desire to exchange information in Open Systems or Open Software.
  4. Development of the internet.


  1. XML is text (Unicode) based; Takes up less space; Can be transmitted efficiently.
  2. One XML document can be displayed differently in different media, like HTML, video, CD, DVD. You only have to change the XML document in order to change all the rest.
  3. XML documents can be modularized and its parts can be reused.

SGML (Standard Generalized Markup Language)

  1. Forefather of all markup languages.
  2. In 1969, it Introduced the notion that data processing and document processing could be one and the same thing.
  3. Introduced the notion of a generalized document format.
  4. SGML specification can communicate between systems.
  5. Provides DTD specification to improve the standard of the document.

Example of an HTML Document

  1. <html>  
  2. <head><title>Example</title></head.  
  3. <body>  
  4. <h1>This is an example of a page.</h1>  
  5. <h2>Some information goes here.</h2>  
  6. </body>  
  7. </html>  


Write the HTML code in notepad and save it with .html extension(EX:sample.html). Click the file to run in the browser.



  1. <?xml version=“1.0”/>  
  2. <mymessage>  
  3. <message> Welcome to XML </message>  
  4. </mymessage>  

An XML document contains one root element and its child elements.

Example of an XML Document

  1. <?xml version=“1.0”/>  
  2. <address>  
  3. <name>Alice Lee</name>  
  4. <email></email>  
  5. <phone>212-346-1234</phone>  
  6. <birthday>1985-03-22</birthday>  
  7. </address>  


The XML code will be written in the XML copy editor. Save it at any location (EX:text.xml). Click it and open in the browse.



output(The XML program output)



Difference Between HTML and XML 

  1. HTML tags have a fixed meaning and browsers know what it is while the XML tags are different for different applications, and users know what they mean.
  2. HTML tags are used for display while the XML tags are used to describe the documents and the data.

Benefits of XML

  1. Simplifies Data Sharing.
  2. Simplifies Data Transport.
  3. Simplifies Platform Changes.
  4. Separates Data from HTML.
  5. Makes Your Data More Available.
  6. Represents the information and the metadata about the information.
  7. XML is referred as future-proof or loosely coupled, since it has the capability of separating process and data content.
  8. XML is used to create new internet languages.

Well-Formed Documents

  1. An XML document is said to be well-formed if it follows all the rules.
  2. An XML parser is used to check that all the rules have been obeyed.
  3. Parser is a software to process XML Document.
  4. It reads the XML Document, Checks its syntax, reports errors and allows programmatic access to documents contents.
  5. XML document is considered well formed if the syntax is correct.
  6. Single root, start and end tag, attribute values in quotes.
  7. Recent browsers such as Internet Explorer 5 and Netscape 7 come with XML parsers.
  8. Parsers are also available for free download over the Internet. One is Xerces, from the Apache open-source project.
  9. Java 1.4 also supports an open-source parser.

Advantages of xml over sgml

  1. Though XML is using most of the functionality in SGML, it provides a number of distinct advantages.
  2. XML permits well-formed documents to be parsed without the need for a DTD, whereas SGML implementations require some DTD for processing
  3. XML is much simpler and more permissive in its syntax than SGML.
  4. Implementation of SGML over the internet is more difficult than in XML.

Advantages of XML over HTML (and differences)

  1. XML is not a replacement for HTML.
  2. XML and HTML were designed with different goals:
  3. XML was designed to transport and store data, with focus on what data is.
  4. HTML was designed to display data, with focus on how data looks.
  5. HTML is about displaying information, while XML is about carrying information.

Advantages of xml over EDI(Electronic Data Interchange)

  1. XML requires less cost for data transaction and maintenance than EDI (which uses Millions of dollars for transactions).
  2. XML uses Internet for data exchange whereas EDI over Internet does not meet much success.
  3. XML has many built in components like validity checking, data mapping, Extensible style sheet etc.,
  4. XML supports internationalization and localization but EDI doesn’t provide it.

Drawbacks of XML

  1. XML is huge – takes lot of space to represent data (3 to 20 times greater than file formats).
  2. XML editors often lack the detail and helpfulness found in common EDI editors.


  1. A well-formed document has a tree structure and obeys all the XML rules.
  2. A particular application may add more rules in either a DTD (document type definition) or in a schema.
  3. Many specialized DTDs and schemas have been created to describe particular areas.
  4. These range from disseminating news bulletins (RSS) to chemical formulas.
  5. DTDs were developed first, so they are not as comprehensive as schema.

Thanks for reading.

Contact Us
+91 9880187415
#280, 3rd floor, 5th Main
6th Sector, HSR Layout
Karnataka INDIA.